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Introductions...
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• CURE LABORATORIES-

+EVAPHY5IOLOGY

• EttERUSE PHYSIOLOW

HACD Biostatistics is one of several research elements comprising the Human Adaptation and
Countermeasures Division (HACD) at the Johnson Space Center. This laboratory provides statistical
consulting to HACD and the space f,ledicine Health Care Systems Office (51.111CSO), provides opportunities
for high school and college students to be directly involved in the analysis and interpretation of biomedical
research at NASA, and conducts independent research to address the special challenges raised by the
Idiosyncrasies of data often gathered on small numbers of human subjects. under non-standard environments
and test regimens.

Statistical Consulting
+ NTSEf C-S000RDINATION

+ IINIIUN010GY
Biostatistics provides consulting expertise, mainyto the HACD research laboratories, in the application of
statistical theory and pradieeto ongoing biomedical research. Laboratory personnel often aid in the

+NEUROSCIENCES preparation of parts ofresearch proposalsthat describe the experimentaldesign, statistical modeling and
subsequent analysis of anticipated research data. Once data is gathered. BSL statisticians also can assist

+ NUTRITIONAL BIOCHEMISTRY with analysis and interpretation of resuts to help the investigatorsextractthe most information consistent
with the goal of maintaining statistical integrity. A BSL statistician may in fact be a co-investigator in projects

• MMOMACOTHERAPEUTICS requiring sophisticated statistical modeling andlor analysis techniques and will be expected to contribute
descriptions of these techniques in forthcoming research papers. In these instances, the participating BSL

• RADIATION Statistician 1Vou1d be Included as a co-author of such papers. Being involved as a consutantto other
Bioastronautics research laboratories provides an excellent opportunity forthe BSL statistician to expand

• TISSUEANAtOGUES hrcJher knowledge base in such diverse medical felds as environmental physiology, osteopathy, neurology,
pharmacology, microbiology, cardiology, nutrtion and
psychology. Although HACD research laboratories
are the Iaboratorye main customer, consulting
support is also provided to the SI.IHCSO in support of
NASA flight operations.

Outreach

Although the primary customers for the BSL reside
within the Office of Bioastronautics, statistical
consulting support is occasionally given to other
organizations within the Johnson Space Center, such
as the Engineering Directorate and Human Resources
and Education Office. The BSL also provides a venue
under which high school or college students, as
summer interns, can be directly involved in the analysis and interpretation of NASA biomedical research data.
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Previously at SUNY Cortland

•	 Built and Directed the Office of
Institutional Research & Assessment
- 2/1999 - 12/2001

• Three Primary Functions of the Office

- Institutional Research
• Ex. Enrollment Management
• Ex. Salary Studies

- Institutional Assessment
• General Education
• Program Majors
• Administrative Units

- Institutional Data Warehousing &
Reporting

• SUNY/NYS
• Middle States & Other Accrediting

Bodies
• The Usual Hodgepodge of others...



More Importantly, Who are YOU?

• How many Directors of IR Offices?
— New Directors?

• How many Associate/Assistant Directors?
— New to your position?

• How many IR Analysts with 5+ years
experience?

• How many IR Analysts with less than 5
years experience?

• Other??



Purpose of This Module

• To provide Institutional Researchers with
an understanding of the principles of
advanced research design and the
intermediate/advanced statistical
procedures consistent with such designs



You Will Learn How To Use

• Independent Measures Analysis of
Variance (ANOVA)

• Repeated Measures ANOVA/MANOVA
Analysis of Covariance (ANCOVA)
— ANOVA with Covariates

• Simple and Multiple Regression
— Block Regression
— Forwards, Backwards, Stepwise Regression



You Will Also be Exposed To

• Exploratory Factory Analysis
— Principal-Axis Factoring

• With Varimax Rotation

• Time Series Regression



Assume That

• This isn't your first course in statistics?
• That you have the basics covered

— Foundations I Level Stats

• That you have SPSS loaded on your
laptop machines

• That you are interested and motivated to
learn!



Format of This Module

• Hands-On!
—I'll talk about the statistical tests, assumptions,

theory first
— Then we'll walk through analyses together

• Using SPSS

—We'll pay a lot of attention to
• Analytic choices that you have

• Interpreting the output

• Presenting the results to your constituents
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Quick Review:
Gaussian Distribution Function

• A. K.A. The "Normal
Distribution"

• A.K.A. The "Bell-Shaped
Curve"

• Has known probabilities
associated with it,

Gaussian -or
"normal"

distribution

fig(x)

Thus all Parametric	 .0214
.00135 :e

Statistics are based on
the Gaussian Distribution

1	 -(X--xfg(x)—	
r6 

e	 26

'

Where x = mean, and o7 =  standard deviation



Quick Review:
Gaussian Distribution Function

• About 68% of all
scores fall within 1 SID
unit from the mean.

Gaussian -or	 -
"nc^rmal"

distribution

fjx)

r 68%
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Quick Review:
Gaussian Distribution Function

• About 68% of all
scores fall within 1 SID
unit from the mean.

• About 95% of all
scores fall within 2 SID
units from the mean.

Gaussian -or
"normal"

distribution

fig(x)
95%
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Quick Review:
Gaussian Distribution Function

• About 68% of all
scores fall within 1 SID
unit from the mean.

• About 95% of all
scores fall within 2 SID
units from the mean.

• About 99% of all

Gaussian -or
"normal"

distribution

fig(x)
99%

scores fall within 3 SID	 x

units from the mean.



Central Limit Theorem

• States that for any population with mean p
and standard deviation 6 ,the distribution
of sample means with sample size n will
approach a normal distribution with p and
SD of 7 n- as n approaches infinity.

• REGARDLESS of the shape of the
distribution in the population.

• By the time sample sizes hit around 30,
sampling distribution of means is close to
normal.
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Thus...

• Since we know so much about the Normal
Distribution

• And we know that sample summaries (means or
otherwise) tend to follow that distribution
— Even data collected from non-normal samples

— Especially so with large sample size (big-n)

• We can usually apply our knowledge of the
normal distribution to statistical comparisons,
estimates, and probability
— As long as we do some preliminary screening...



Ex. You may recall...

• That we can compare a person's score to
their population with the "Z-Score"
— Z is a "standardization"

• Mean = 0
• SD = 1
• Probability tables tell us percentiles, probabilities of

being "that far" away from the mean.



Z-score quick review

• A student takes a standardized test and scores
XXX

• Can compare their score to the population of all
test-takers during that time, given population mean
and standard deviation as:

Z = X—P ,where
6

,u is population mean and 6 is population std dev



Z-score quick review

• With their Z-score, we can glean
— Their percentile rank [p(lower)]
— Probability of scoring higher than them
— Other relevant probabilities.

Gaussian or
"normal"

distribution

f9(x)
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T-statistic for Comparing Sample to Population

• Where we don't know SID of the population,
but we have sample data
— Thus sample mean and sd

• And we know from CLT that we can estimate
population SID by SE

SE = s-
 S

x



T-statistic for Comparing Sample to Population

• Given our sample data, we
can calculate
— Sample mean
— Sample SD (s)

• Given SE formula
	

t
S

SE =Sx=^

• We can calculate
Confidence Intervals on
this Estimate also

• And with t-tables...p-values

S-
x



Moving to the t-test for comparing two samples

• Used for comparing	 Population I
two samples collected`

a

Population 2

randomly from two
populations

Sample 1
X=0
X=2
X=4

Sample 2
X=4
X=6
X=8

x =2 x =6
s=2 s=2

	

S 2 	 S, 2

(X-1—XZ
t =	 where s—	 +

	

S— _	
XI -x2	 n	 n

	

XI-X2	 1	 2

and S2 
SSl + SS2 cif sl + d f2S 

22

d f 1+ddf, + qf2

• Fairly simple
modifications of the t-
statistic comparing
sample mean to
population mean



Dissect the formula: S-
XI -X2

rx 1 —X2 S2 S2
t =	 _ _	 where (s- — = p-`+ p

XI -12
SX i -X2	 1	 n2

an s2 
SSI +SS2 _ df, sl + df2s2

p df l+df2 	 dft...Idf2.



Dissect the formula: Numerator

The difference between two sample means

X1—X2

s
Xl-X2

t



Dissect the formula: Denominator

The difference between two sample means

t= FX I -Xz
S	 Divided by some measure of standard

X 1 —X 2	 error of the differences



Dissect the formula: Question?

The difference between two sample means

t= FX I -Xz
sXl-X2

Divided by some measure of standard
error of the differences

o°
Are the differences that I

see between my two
means unusual, given
variability among other
sample means of this

a size? ^—



T-tests on the Computer:

• Software gives us t-score and a p-value
• Allowing us to test hypotheses that the two

samples come from the same population
(or not)

• And describe the magnitude of the
differences (confidence intervals)

le Ex. t = 4.87, p<.001
— H null Two samples are from same population
— H a It : Two samples are from different

populations
• Reject the Null (alpha < .05) &Report the

maanitude of the differences



Virtues of the t-test

• EVERYONE seems to understand it!
• With CLT, it's easy to apply to lots of

different data scenarios
• There are other versions that make it very

flexible
— Formula for "Repeated Measures" designs
—Formula for problems associated with non-

normality and/or variance heterogeneity



Limitations of t-tests

• Alpha risk is .05 for each Mest

— Probability of falsely rejecting the null, and
concluding that there is a difference, when it's
really due to chance.

— So comparing 3, 4 7 5 or more groups is quite
problematic!

• With large samples, as with ANY statistical
test, "significance" does not necessarily
indicate a meaningful difference.



*Comparing Three Groups

Group 2 
00

Group 3Group I



C
omparing Three Groups

Im

Group I
	

Group 2
	

Group 3

T-test number 1
Alpha risk = .05



C
omparing Three Groups

IM

Group I
	

Group 2
	

Group 3

T-test number 1
	

T-test number 2
Alpha risk = .05
	

Alpha risk = .05



Comparing Three Groups
Im

Group I
	

Group 2
	

Group 3



Comparing Three Groups
IM

Group I

stk

f

roup 3

st number 2
Alpha risk = .05

Group 2

^^	 11J

T-test number 3
ha risk = .0



Analysis of Variance (ANOVA)

• Can compare unlimited number of groups or
occurrences, and still keep alpha risk = .05

• Able to take multiple grouping (or time) factors
into account and determine their independent
and combined effects

• Can examine "trends" in data, and can test
specific (often complex) hypotheses

• The analytic focus is on variance, but the
interpretation falls back to means—thus results
become intuitive



Assumptions Required of ANOVA

• Data collected randomly from the
population, with roughly equal n per cell
—And sufficiently large n (n>30, common r-o-t)

• Data measured on interval or ratio scale,
and is normally distributed

• Homogeneity of variance across groups
• Sphericity for RM designs—variance of the

differences between means for any pair of
groups is equal to any other pair



Assumption of Randomly Collected Data
with Sufficiently Large n

• In  I we don't always "randomly select"
— But can we assume that "today's" data is a random

representation of "recent years?"
— Or can we START randomly selecting a subset of

your populations for research?

• How big is big enough?
— Rule of Thumb... at least 30 per group
— More is better

• Cautions about overpowered studies...
— But BALANCE is critical!!

• Rule of thumb smallest group should not be less than 1/3rd
the size of the largest group.



met Gaussian or
"normal"

distribution

Assumption of Interval or Ratio Scale &
Normality

• The "bell-shaped" curve—assumption of
all parametric statistics

• Studies show that ANOVA is robust to
violations of this, but only if sample size is
substantially large, and Homogeneity is

fg(x)

014	 ;	 ;	 ;	 .0214
.00135 '	 :.1359 :.3413 ; .3413 ; 1359 ; 	 .00135

-36 -26	 -6	 D	 6	 26	 36
x



Assumption of Homogeneity of Variance
Across Groups

• Variance on the dependant variable should be similar
across groups
- Why?

• Because we're examining VARIANCE in ANOVA, and so
we need for variance in each group to be roughly similar
before we can conclude that any differences that we find
are attributable to group differences (not mere variability
differences).

• Even in Means Comparisons (ex.t-tests), since Means
are highly affected by variability, we need for variability
to be similar in our groups so that differences that we
find can be attributed to true group differences, and not
merely by variability differences between our groups.



0

More on Homogeneity of Variance

If distributions are
normal in one, then	 **
should be for all	 ^**•

Group	 Group	 Group
1	 2	 3



0

More on Homogeneity of Variance

If distributions in 1
group is
leptokurtotic (tall
and skinny), then it
should be for all
other groups

7
Group	 Group	 Group

1	 1	 2	 3



• If distributions in 1
group is
platykurtotic (short
& fat) then it should
be for all other
groups

More on Homogeneity of Variance



More on Homogeneity of Variance

• Any Miss-Match is a
Problem
— Because we might interpret

a statistical differences to
real group differences,
when it's actually due to
heterogeneity of variance

• ...Thankfully SPSS will
test this assumption for us
(stay tuned)

Group	 Group	 Group
1	 2	 1 3 F



What about skewed data?

• Positive or negative skews in the data can
wreak havoc with statistical analysis
—Thus always recommend thorough data

screening
— Identify outliers—data entry errors?
— Consider data transformations if necessary

• More on this later



Two General Types of ANOVA

• Independent Measures ANOVA (IM-ANOVA)
— Data are collected from separate groups of subjects, and

comparisons among groups are desired
• Student GPA by MAJOR
• Faculty Salaries by DEPARTMENT

• Repeated Measures ANOVA (RM-ANOVA)
— Data are collected from the same group of subjects on multiple

occasions/times, and comparisons of occasions are desired.
• Longitudinal Studies
• Student Opinions as Fresh, Soph, Jr, Sr
• Alumni Donations after 1, 3 7 5, 7 years post-graduation



K

Rz?	 z, ^.
OUT OF

CONVOL

IM & RM Designs...

Repeated
Measures Designs

Independent
Groups Designs
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One-Way IM-ANOVA

le For comparing two or more populations
—Where sample data have been collected

Population 1

.4

Sample I

a
2
4

PO;)LElation 2	 Population 3 A

Sample 2
	

Sample 3

1
	

4

4
	

6
7
	

8

=r
	 —



Population 3

_	 to

4
6
8

X=

Population 1

^:^^» h ip t

0

2
4
X=2

Population 2
u=7 Orr

Srunple ?

1
4
7
X=4

0 ol
Van-ability 

jw

ANOVA: What's in a Name?

nerween uroup

VariabiIits,

Individual Differences  IDF )
Error
REAL GROUP DIFFERENCES!

Within Group
Variab ility

Individual Diffierences
E rrior



Analysis of Variance F-Ratio

• ANOVA is truly an analysis of a measure
of variability, called "variance"
—Within-Groups Variability
— Between-Groups Variability

• We Evaluate an "F-Ratio" Representing
the Ratio of B/T over W/1'.

F variability between groups ID' + error + group differences

variability within groups
	

I D' +Terror



Recall your Simple Algebra...

• If the same quantity exists in the
Numerator and Denominator of a fraction,
they "cancel each other out" 	 Total

Variability

O

Assuming
homogeneity
of variance

The F-Ratio

variabifitv between

var-lability within groups

Between Group	 Within Group
Variability	 Variability

Individual Differences (ID's)	 Individual Differences
Error	 Error
REAL GROUP DIFFERENCES!

O
O;A^ + ei1rc,)r + g ro-up d I fferenic es

ids + 8ftQ r



Recall your Simple Algebra...

• If the same quantity exists in the
Numerator and Denominator of a fraction,
they "cancel each other out"

• Leaving us with a number (F) that
represents Group Differences!

The F'-Ratio

Variability between g roups

variability ithin groups

Xs + e?r- eo^ 4,e o u
ks + 6%^r



Analysis of Variance F-Ratio

• If F=1...
• As F incrE as( s .. .

F(4,12)

596 of the distribution

o :1'
	 is greater than 3.26

0	 1	 2	 =	 4	 5

	

I, ,	 F

\ FO 0.10111
-6 17	 5Z of the distribution
CL
	 is greater than 1 .93

F

How do you know if F is "big enough" to
considered significant?
— How do you know a t-test is significant??

The F-Ratio

varkibility between g roups
variability "!1t in groups

I'P^s + c r + ^r u p di ffer-erne

k'sli  + e^p,-



Confidence Intervals with the F-test

• Ci's for comparing two groups are
straightforward and intuitive

• Ci's for "Omnibus" differences are less so
— Effect size calculations exist, but non-intuitive

to statistically naieve
• Stay tuned for discussions about post-hoc

tests, and how they can sometimes help
• Plots will also be very informative



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
components of the F-test
—Variability (SS)
—Degrees of Freedom (df)
—Mean Square (MS)
— F-statistic (F)
— Probability values associated with F

• Total, Between Groups, Within Groups



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
COI'YlpOn@11tS Of the F- sum of squared Deviations from

—Variability (SS)	 6
—Degrees of Freedom (df)
—Mean Square (MS)
— F-statistic (F)
— Probability values associated with F

• Total, Between Groups, Within Groups



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
components of the F-t

Like in a t-test, each F-test has df—Variability (SS)	 v lues for si nifiance testin g
—Degrees of Freedom (d
—Mean Square (MS)
— F-statistic (F)
— Probability values associated with F

• Total, Between Groups, Within Groups



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
components of the F-test
—Variability (SS)
— Degrees of Freedom
— Mean Square (MS) i
— F-statistic (F)

MS is the Variance Statistic for
NOVA—calculated with SS & d

— Probability values associated with F
• Total, Between Groups, Within Groups



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
components of the F-test
—Variability (SS)
— Degrees of Freedom (df)
— Mean Square (MS) --
— F-statistic (F)
	 The "F" statistic is another word for

— Probability values associated with F
• Total, Between Groups, Within Groups



IM-ANOVA Summary Tables

• Purpose is to provide the necessary
components of the F-test
—Variability (SS)
— Degrees of Freedom
— Mean Square (MS)
— F-statistic (F)

...and p values tell us the
ionificance level of the rata

— Probability values associated with F
• Total, Between Groups, Within Groups



This is what it looks like...

df SS MS F P-

Between ## ## ###
Groups

#.# ##
Within Groups ## ## ###
(error)



This is where it comes from (Independent
Measures Designs)

- ^r	 -	 ^^ x12

SS — xi — — X 2 
_	 I	 total	 N I

N

SSbetween	 Nk X k - Ud	 Kk = i	 between
SS	 7

within —	 SSinside each group

df,ithin N-k



mstotal

Msbetween

Sstotal

dftotal

S^between

dfhetween

Sswith in

dfwithin
MSw^thin

This is where it comes from (Independent
Measures Designs)

MsbetweenF I
MSwithin

F-tables provide a p value for a
given F-statistic, using dfbetween

(numerator) and dfwithin
(denominator).



Example 1
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Xcai Sian ReaJEag°-

• Compare Faculty Ratings Across 3
Departments
—History
—Psychology
—Math

• Simplest of ANOVA Models, with ONE
Independent Factor (department)
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One-Way Point-n-Click:
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Ps•r-cl- 10
Psych 10

Psych 10
26 Psych 10
271 Psych 10
28 Psych 10

` 29 Psych 10
30 Psych 10
31 Psych 10

F_ 32 Psych 10
- 331 Psych 10

34 Psych 10
361 Psych 101

361 Psych 101

Dependent List:	 OfC
k. 	

Val 	 var•	 ^^^ar	 oar	 var	 var	 oar
Shider-^t m'..'al of Inkru c.

Parke
F;11

	Reset

1VA: Post HocrCompa risons

Equal  Variances Assumed

F_ LSD	 k! G - N - IC	 t— Ih?^Ilar -flimr^n

70 Bonferroni	 Options	 X HF10_4
P S idak.

F_ Scheffe	
Statistics	 ^i

R-E-G-W F	 r DescriptiveCancel

R-E-G- Q	 r Fixed and randrm effect:_

Homogeneity of variance test	 Help
EqualVariancesE.c^wrn-Forsythe

Tamhanes T	 ?Ih 

Syntax method-
ONEWAY
eval BY dept
/STATISTICS DESCRIPTIVES HOMOGENEITY
/PLOT MEANS
/MISSING ANALYSIS
/POSTHOC = TUKEY BONFERRONI SIDAK GH ALPHA(.05).

7

4



One-Wav 	 u p u
doneway_ANOVA.spo
File Edit View Data Transform Insert Format Analyze Graphs Utilities Add-ons Window Help

*1 *1 +1 —1 1113!
E Output

U oneway

Q Title
j Notes

La SPSS Text
W Descriptives:

SPSS Text
Test of Homcrcieneity of Variance
SPSS Text
ANOVA

SPSS Text
p•	 Post Hoc Tests

& Title
Lj Multiple Comparisons
Q SF'SS Text

p• -° ] rHomogeneous Subsets
[	 Title

.......[	 Student eval of Intro COLJI
El Q Means Plots

Title
......[	 Student eval of Intro course

SPSS Tent
Student eval of Intro course

t] Univariate Analysis of Variance

Oneway--IR Example #1: Oneway Independant-Measures ANOVA

Notes

Output Created 12-JUL-2005 15:24:11
Comments

Input Data U:tiAIR Stat Institutes & book
chapters'AIR Stat Institute
20051SP0 SStufRlREX1.sav

Filter ^none7

Weight cnone5

Split File -none-
N of Rows in
Working Data File 253

Missing Value Definition of Missing User-defined missing values are
Handling treated as missing.

Cases Used Statistics for each analysis are
based on cases with no missing
data for anyvariable in the analysis.

Syntax i rNEVVAY
eval BY dept
.STATISTICS DESCRIPTIVES
HOMOGENEITY
.PLOT rv1EANS
1,11SSING ANALYSIS
POSTH0C = TUKEY ALPHA(.05).

Resources Elapsed Time 0*00,00.20

NOTE The	 Fled font a6o e. ,5 r,5,j Normally "re duces" the Notes output, but it's handy to

open it back up if you forget the exact syntax tkatwas used to execute a statistical procedure. 7ven i f you
don't always run stats from syntax, it's nice to see tkat you COU LD duplicate an earlier analysis perfectly 69

copyingtke syntax from the Notes output. NOTE Aso that tke file location and name are shown here too...

Descr iptives

cifiuiPntoval of Intrn cnurse

N Mean std. Deviation Std. Error

95% Confidence Inte rdal for

Mean

Mininwm Max inl ii Lower Bound Upper Bound
Psych 101 36 6.65 1.713 .165 6.28 7.02 4 9



Skip to RM

Two-Factor ANOVAS
	

ANCOVA

• What if you want to compare 2+ groups on
MORE THAN one factor?
— Effect of students' gender and race/ethnicity

on performance?
— Effect of students' major and high school on

cGPA?
—Effect of faculty members' level and age on

job satisfaction ratings



Two-Factor ANOVA Effects

• Main Effects
— one per factor ... an F-statistic evaluating the impact of

each factor in the model
• Gender effect on performance (M/F diffs?)
• Race/ethnicity effect on performance

• Interaction Effects
— One per interaction... an F-statistic evaluating how

two (or more) factors interact with one another to
affect the outcome

• Gender "by" Race/Ethnicity interactive effects on
performance

• More complex... often more interesting!



Example 2
	

J	

Xcai Sian ReaJEag°-

• Compare first term GPA by Major and
Citizenship
— U.S. versus non-U.S.

—Three Majors—Math, Business, US History

• 2 x 3 ANOVA



var	 I	 var	 I	 var	 I	 var	 I	 vat

h:^1is=;ir^g	 Cc^lurr^	 :^,ligr-^	 fa9easure
None	 8	 Right	 Scale
None	 8	 Right	 Ordinal
None	 8	 Right	 Ordinal
None	 8	 Right	 Scale

5 f_1 ... 1 _L_1

The Data
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

14:

Stu id	 ma or	 cit	 term1 a	 vat	 vat

	

1	 1	 Math	 u. s . +	 2.55

	

2	 rEditor

J	 File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

^ Jam „- I I ^ E.^ A IN ^ ^ ^ 0 ^ I

	

6	 P-Jayne	 Type	 Width I Decn@14	 Label	 I	 Values

1 stu id	 Nurneric 3	 0	 jNone

	

cl	 2 major	 Numeric 11	 10	 Ill1 Math}.

-Value Labels	 O

Value:
Cancel

Label:

add	 1 = "Math"
2 = " Business"

Lharnae	 _ "US History"

Fl emf-r..,

	25	 25	 1-,elath	 uther	 -1.13

	

?F	 26	 Math	 Other	 3.4

	

-17 l 	-17	 16.1_+L,	 n4 L....	 '7 fI

^A
0

Cancel

Help



Back to 2-factor I M

Repeated Measures ANOVA

.

.
Only one sample
Differences based on
time, or condition
Using the SAME
subjects time after
time

Ri3pLlli]t1iL4n
Wing Time

as the
Repeated
Measure



Using Time
as the

Repeated
Measure

4k
Population

Repeated Measures ANOVA

• Same people... no
"individual

• More powerful
statistics

The F-Ratio

differences" in the F-
ratio

F variability between conditions/times error + condition/time differences

variability ithin the sa.ixip le	 error



Using Time
as the

Repeated
Measure

Population

eINr + condition/time differences

o r

*Repeated Measures ANOVA
 1w:

• Same people... no
"individual

• More powerful
statistics

The F-Ratio

differences" in the F-
ratio

F
varlabifit-v between conditions/times

variability Within the, sample



RM-ANOVA Summary Tables

• Same Concept as IM  Table, but now
— Instead of "Between Groups"

"Between Treatments" effects
— And also "Within Treatments"

• Consist of subject differences (b/t subjects)
• And error

• One Group measured several times, thus we
partition "within group" variability into that which
is due to individual differences, and error.

effects, we have



This is where it comes from
(Repeated Measures Designs)

SStotal = Same as IM Anova

SSbetween = Same as IM Anova

sswithin —Same as IM Anova

S'S^+

	
(each  person's total across treatments )

2

/ t s^cbjects — k

Ss error = S within SSb / t subjects

(I:xy

dfotal = N—I

dfbeNween = k — I

dfwzthin = N — k

dfb/t subjects — n I

df,ror = N — k) n —1



This is where it comes from
(Repeated Measures Designs)

Msbetween
	

between

 
Sshe tween

r^between
Ms

e or

Sserror
Mserror	 F-tables provide a p value for a

dfcrror	 given F-statistic, using dfbetween
(numerator) and dferror

(denominator).



Example 3
	

J	

Xcai Sian ReaJEag°-

• Compare student satisfaction ratings over
time (four time
—Freshman
— Sophomore
—Junior
—Senior

points)

• Same students ... different times



Using Covariates in ANOVA

• Sometimes the apparent effects of one
factor, can be "explained" by the effects of
some other factor—called a covariate

• There is a significant relationship between
panty hose wearing behavior and a form of
cancer ... any ideas what kind of cancer?



Using Covariates in ANOVA

• Let's look at the Faculty Salaries from a
fictitious Biology Department:
— Comparing Salaries by Gender and Tenure

Status
• A simple 2-factor ANOVA

—Then considering AGE as a possible
covariate in our model
• In-other-words, covary-out the effect of age and

see if the salary differences remain...



Example 4

• Describe effects of sex and tenure on
faculty salaries for Biology faculty
—Sex (male, female)
—Tenure (tenured, untenured)
— Use Age as a covariate

• 2 (sex) x 2 (tenure) Model
— With a covariate



Related Advanced Topics

• ANOVA can handle multiple factors
- More than most humans can understand!

• Even just three factors can produce SEVEN effects!
— 3-way interaction
— A*B 2-way interaction
— A*C 2-way interaction
— B*C 2-way interaction
— Amain effect

Three-Factor Example in
Monograph:

Salary by
Sex, Tenure, & Department

— B main effect
— C main effect

• Care to interpret that?

• Four factors = 15 effects
• Five factors = 31 effects!!
• 2n-1



Related Advanced Topics

• Mixed-Model ANOVAs
• It is possible to consider both types of

factors in a single model
—Student satisfaction over time and by major
— Student performance over time and by

teaching modality	
Mixed-Model Quick Demo:

Intellectual Growth
by College over time



Related Advanced Topics

• Simple Non-Parametrics
— Chi-Square (best for 2x2's; purely categorical

outcomes)
— Mann-Whitney U (good for 2 groups; rank or ordinal

data)
— Kruskal-Wallis H (if >2 groups, like Oneway ANOVA)

• Loglinear ANOVA
— Useful for more complicated multi-factor designs

• Recommend additional training & reading
— Allan Agresti's Text is a good one



New Advances
• Hierarchical Modeling (a.k.a. HLM, MLM)

— Maximum Likelihood based, for using random
(i.e. not fixed) factors

—Assessing impact of "layers" of grouping
factors

• Observations within person

• Person within group

• Group within larger group

— Much better at accommodating for missing
data

—Many variations for different distributions
—Unfortunatel y , SPSS is not well-suited



Day 2: The saga continues...

FoundationsII

	

AIR	 ^j^ 

Ynstitute

2009
Association for	 Association for

	

Institutional Research	 Institutional Research



Shift Gears: Predicting "Y" from "X" (or
several "Xs"

• Z-tests, T-tests, ANOVA
—All for comparing groups, or observations over

time

• Now we'll shift gears and talk about
Regression Analysis	 '^



Data Relationships with Two Variables

• Data Relationships with Two Variables
• Getting a Visual on relationships

—Quantify relationships (Pearson's r)
• Strength
• Significance

— Background leading into Simple Regression



Are Two Variables Related?

• SES and GPA?

• High School GPA and First Term College GPA?

• SAT Scores and GPA?

• ACT Scores and GPA?

• SAT and ACT Scores?

• We're looking at PAIRS of variables
• And we're assessing relationships (non-causal)



NOTE THAT

• We are not comparing means from 2
different groups here!

• We are trying to see if there is a
relationship among two different variables
— Usually continuous in scale



We could look at a table of numbers?

1
1
5
4
4

Any
between

1.805142
2.1398
31.695

8.602829
15.6

X
here?

1
2
4
3

relationship
and

.6106
1.7175
10.072

5.245146

Y

3
2
2
6
2
5

'

161
3169

.64892
4.294138

88

'1
21.3

G

1
2
1
4
2
2
5
3
5
2
4

I	 H I	 I mF JW7 K L	 I
Y x Y x Y

10.032 2 1.8963 2 2.4707
1.5777 3 3.579076 0 0.677864

1.755798 1 0.869 6 29.882
22.341 3 7.0433 1 1.678363
3.3269 4.1 3 3.9921
7.4066 1

1
1.27601

601 6
4 8.706296

2.616718 3 1 6.310606 3 6.6881
2.520029 6 42.308 2 2.9196

6.0723 2 4.1634 2 2.2384
1.106803 6 53.8 1 4.2645

4.319 0 0.309287 6 23.63278
1.9365 3 6.996916 0 0.412273
10.885 3 5.088329 0 0.246107
6.8534 6 26.69648 0 0.710681
4.8349 4 13.59942 4 7.300787
18.4741 4 10.987

3.681995 3 3.957562
31.549 2 2.8526
6.5092 2 1.9853
17.05 6 27.397

1 1.6996 1 0.878264 4 1 0.4 0 0.434728 4 13.68486
1 1.985864 3 7.138 0 0.72 2 2.1139 1 1.1956
5 26.596 4 10.662 5 18.693 3.3516

1.9676
3
4

5.3035
11.874425 21.10395 6 20.30073 0 0.281206 Q

4 14.58116 1 0.8408 1 2.2576 3 7.7646691 1 1.446295
6 66.712 5 16.97328 2 1.6274 2 2.6187 3 4.9911
1 1.898284 0 0.78812 4 11.18872 3 5.230134 3 4.310958
3 6.746124 6 20.283 4 10.66362 2 1.4808 3 6.160213
3 4.671579 2 2.7033 6 51.927 5 30.4 4 16.924

5 18.27308 2 2.7903 6 58.879 4 4.4573



Scatterplots help us visualize...

• Two continuous
variables, X and Y °	 0 0

0	 0
0	 0 0000

0 0	 0°° ^°
• Scatterpl ot  shows	 0 °° ^ o ° °°

0000=0 0

association of X	 ° °^°^0 0 0= 0° 0000 m
(B	 0 0c^000 0 0	 0

and Y	
° 0 8 8 °

0000	 °00
° MO

0 0000°	 0
0 0 ao 0	 00000CDD0
0 CD	 OO

0 0 0 CD 0
CDC) 0	 0

0 0000 0
° soo °
0 0 00

0

Variable X



Recall basic Correlational Analysis

• Two continuous
variables, X and Y

• Scatterplot shows
association of X
and Y

• Dots represent
observations
(usually people)

0
0 0 0

0 0
0	 0 0000

0 0 0
0 0 00 0mo

0 0 0 0 0
rteW

0	 moo
0 00 00 0	 0

O 0	 OD O
DDDDCDOO 0

0 00 CD	 00
0 0 OOOCD 0

0 0 0=0
0 0000 m

>
8 8c^oo (xi vr ^)O O	 0000 00

0 0 0 0	 0
0	 mo

0 00000	 0
O 0	 00 0	 0

0000000
0 CD	 Oo

O 0 O CD 0
CDC) 	 0

0 0000 08	 00^00000

Variable X



Quantifying the Relationship: Recall
Linear Correlation

• Measures the direction and strength of the
linear relationship b/t two variables.

r= 1
	 xz — x Yi—Y

n —1	 sx	 sy

• Sign tells you what?
• R-value tells you what?
• P-value tells you what?

Causality.?



Scatter Plots... Footballs, Basketballs,
Directionality
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Correlation Analysis Quantifies ou
lUnderstanding

MF-rte RE 1 vs AgEWWRE'2

r

iQ$
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Ordinary Least Squares Regression

• Using Simple Regression to Describe a
Linear Relationship

• Regression as a Descriptive Tool
• Regression as a Forecasting/Prediction

Tool
• Making Inferences from Simple

Regression



Simple Linear Regression

• Statistic used to describe linear
relationships among variables:

—b +b 	 Just like HS Algebra:YoX 1	 Ŷ=-- m̂(X^)+b

y =the dependant (outcome) variable

x the independent (predictor, explanatory) varible
bo =they -intercept of graph of all (x, y) pairs
bi the slope of the line



Consider a simple example of a
Height/Age Scatterplot...

• Each green dot represents a person in the
sample	 ,

E
Vu
s
a^

00
nonon

x=Age (mo.



The OLS Regression Equation

A "best-fitting" line is calculated from the
sample data
Can be used to predict Y, g

00
Y4^ = a + 24x4	 _ Q^^a

Error= y— y	 ^
V

t

Age (mo.



icted height (given age)

ual height (and age)

Negatii
error

E
V
u
•1••^t

OLS Regression Lines Aren't Perfect!

Some Predictions are too high:

Y47 = a + 24x47

Error = y — y

Age (mo.



OLS Regression Lines Aren't Perfect!

Some Predictions are too low:

Y47 = a + 24x47

Error = y — y

Actual height (and age) • 0

0 00°

^	 °	 80°
V	 0

0	 0
0	 0t

°	 o °
'-	 8
_	 °0088

l	 Positive

icted height (given age) 	 error

Age (mo.)



OLS Regression Lines Aren't Perfect!

Some Predictions are too high:

Actual height (and age) 0 04,

;884

6Wedicted height (given age)

0	 0 	 Negative
 error

0	
_ _

0

0	 0

0 J-- 80 0

'00 8 8

Y47 = a + 24x47

Error= y— y	 ^

Age (mo.



ght (given age)

rror

it (and age)

y"",

Deriving the "Best-Fitting" Line

• Getting the best line is KEY!
• One Approach would be a line that Minimizes

the Sum of the Errors:



Why not minimize	 -y-^?
IV 

• Because positive errors cancel out
negative errors when minimizing sum of
errors... ^ (Yi

i-1
Yi)

n

• ..We need a way to consider the sign of
the error into the minimization function.



(Y1 —Y, O
(X^, Y-)

...And Also...

0 All lines minimizing
through the post (A

rrors pass

only 1 is really "best"
0 ...Infinite number of lines meet this criteria, but



Another Approach?

• Minimize the Absolute Value of Errors?
yt

YIYI-YI
=1

Least Absolute Value (LAV)

.No unique LAV line, plus very complicated
calculations



Third Approach?

Minimize the Squared errors?

n +
y (YI — YJ

Least Squares Regression (LS)



(xi — x )(yi — Y)
h, (slope) _	

31

 

(X x )2

Is LS Minimization Possible?

• Yes!

For a Linear Equation Yi = bo + bix:	 ...simpler formula
n	 n	 n

	

xi .yi - -	 Xi	 yi
i=1	 n

2
n	 1	 n

Z	 Z

i=1	 n	 i= 1

b (intercept) = y — bZx



...a NOTE about formulae

• Hopefully you'll be able to recognize what
they're doing.

• But don't worry about memorizing them!

• SPSS (or whatever your choice of
software) will calculate the components of
the OLS Regression Line for you anyway!



Minimizing the SQUARED Errors

• Takes care of the problem of positive
errors "canceling out" negative ones

• Computationally simple enough for hand
or computer calculations

• Creates a unique "line of best fit"



Let's do one by hand...

Xi	 Yi
1	 1	 3
2	 2	 2
3	 3	 8
4	 4	 8
5	 5	 11
6	 6	 13



Let's do one by hand...

I 	
71

 Yi
YX i 'c, ^', — h =

1	 1	 3	 ^x;-
2	 2	 2	 '/^
3	 3	 8
4	 4	 8

1	 t^
Y, Xi y yi

n i=1	 i=1

1	
n	 2

Yxi
n i=1

5 5 11 Start with
formula for b;

6 6 13



Let's do one by hand...
71	 1	 71	 77

Y xiyi —Y, xiyyi
Xi	 Yi	 h= i= 1 	n i = 1 	 i=1

	

n	
1	 n	

2
1	 1	 3	 Y X12 - Y 

xi
2	 2	 2	

i= 1 	 n i= 1

3	 3	 8
4	 4	 8
5	 5	 11	

The b ; formula
requires E(x)

6	 6	 13	
and e(y)

sum 21	 45



Let's do one by hand...

n	 1 n	 n
1

2
	

Exlyi --Ix;lYi
Xi	 Yi	 Xiyi	 X	 b _ ;-i	 n ;-i	 ;-i

I=	 z

1	 1	 3	 3	 1	 ^x; —n^^x;1

2	 2	 2	 4	 4 	 `- 	 i-1 J

3	 3	 8	 24	 9
4	 4	 8	 32	 16	 The b ; formula
5	 5	 11	 55	 25	 requires these

two columns
6	 6	 13	 78	 36	 aIso... -i

sum 21	 45	 196	 91



Let's do one by hand...

x,Y;
X i	Vi	 Xiyi	 X2	 h = ;-

n	 1	 ro

1	 1	 3	 3	 1	 fix; — ^ Y,x 
2

2	 2	 2	 4	 4	 `_'	 n'-1
bo =y —b;x

3	 3	 8	 24	 9
4	 4	 8	 32	 16	 x= 6 =3.5
5	 5	 11	 55	 25	 — 45
6	 6	 13	 78	 36	 Y = 6 = 7.5
SUCH	 21	 45	 ,,.and bo requires

means of x and y

1	 t^
Ixilyi

n i=1	 i=1



Using the formula...

For a Linear Equation y; = bo + bx:

n

xi yi —

bi n
2xi —

l=1

1 n	 nI: Xi Yi
n i= 1 	 i=1

2
1	 n

xi

196— 6(21)(45)
91— 1 

(2 1)2

6

38.5 = 2.2

17.5

bo = Y— — bI x— = 7.5 — 2.2(3.5) = —0.2



Resulting in one, Unique LS
Regression Line:

y=-0.2+2.2x

• What does this line do for us?
—Given x=15.... Predict y. 	 32.8

• What can you say about the errors that
you will make in your prediction?

We've minimized our
error in prediction



Using LS Regression to Describe
Relationships

• Can be used to establish the weight
assigned to various factors that may (or
may not) predict some outcome
— Ex. Assess the value of knowing an incoming

students' SAT Verbal on their first-term GPA,
based on a sample of historical student
application/enrollment data

GPA —Z,^Site,^,n	 1.2 + . 312 (SA TVe,^balf



Using LS Regression to Describe
Relationships

• Can be used to establish the weigh
assigned to various factors-thatinay (or
may not) predict some outcom

e^^— Ex. Assess the value of knowing anoming
students' SAT Verbal on their fGPA.,
based on a sample of historic 	 ent

applicatio.-0

GPA fl,^S

ffi'entdata

1.2iC3121 A Tverbal )



Let's run a Simple Regression using SPSS

Description of Dataset NH SAT A630
The dataset contains annual information on the set of New Hampshire students who have taken the

Scholastic Aptitude Test (SAT) each year from 1976 through 1998. The variables in the dataset
are defined as follows:

• YEAR
• TOTAL	 = Total number of SAT takers in NH
•	 SATV = Average SAT-Verbal score
•	 SATM = Average SAT-Math score
•	 PCTDOCT = Percentage of SAT takers planning on pursuing a doctorate degree
•	 UNH = Number of SAT takers sending test scores to the U New Hampshire
•	 CPI = Consumer Price Index (1983 = 100)
•	 UNHPCT = % of total SAT takers sending test scores to U New Hampshire
•	 LUNHPCT = Natural logarithm of UNHPCT (=LN(UNHPCT))
•	 Resident = Resident tuition rate at U New Hampshire (in $1000s)
•	 Nonres = Nonresident tuition rate at U New Hampshire (in $1000s)
•	 Private = Average private tuition rate in New England (in $1000s)
•	 Income = Median family income (in $1000s)
•	 Lres = Natural logarithm of Resident (=LN(Resident))
•	 Lprivate = Natural logarithm of Private (=LN(Private))
•	 Lincome = Natural logarithm of Income (=LN(Income))
•	 Lnonres = Natural logarithm of Nonres (=LN(Nonres))



Let's run a Simple Regression using SPSS

• Let's predict the number of SAT scores we
might expect to be sent to UNH, so our
Enrollment Management Office can do
some strategic planning.
- Y = U N H

• Let's use only 1 predictor—the total
number of SAT test-takers
- X1 =TOTAL

• Ok.. This is a little boring, but bare with me!



SPSS Demo

• Simple Regression—used to describe the
relationship between total number of SAT
test takers in NH, and the number of SAT
scores sent to NH Admissions.



Moving Beyond Describing
Relationships...

• Can we use Regression to "go beyond"
what sample data suggest?

• Can we make inferences about how two
variables in the population might be
related based on observations of sample
data?



Why would we want to do this?

• Why bother when most IR offices have access to
your local "population" of students (ex. All
current incoming freshmen)?
— i.e. you don't randomly sample your student data

warehouse... you tap all data you have?!
• Because you want to make inferences about the

whole incoming class based on "today's" data
• Because you want to make inferences about

next semester, next year, etc...
• Because you want to do some strategic planning

that could benefit by this kind of analysis



Statistical Inferences require Assumptions
about the Population

• Given Population with X and Y

P, i, =conditional mean of y, given x,

Pyix = ,8a +,8,x where

PO = population y -intercept, and

X31 = slope of the population regression line.



t	 Population x

0

ra

a

_
0
:z
M

CL
0

CL

0
I
M

CL
0
M

_0
0a

We assume Population X/Y Relationship is
Linear

a

Population x

0



0

0
a

czI

ra
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RE: The Population Conditional Mean...
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RE: The Population Conditional Mean...

f 
PyIx =conditional mean of y, given x

O
a.+
tQ
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CL

PYIx = 40
---------------------------------------- ---Q

PyIx = 30
------------------------- ---

Prix _ 20'000

For given x, y varies, with
a mean and variance

...leading to Prediction
Error ..or

Disturbances .. adding a
term to our regression

equation:
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Population x



Resultant (Inferential) Regression
Equation

I PO + P xiYi	 I
• Where e; represents the difference

between TRUE y and the conditional
mean of all yjx
—Disturbances, or Error Variance
— If our equation were perfect, e;=0

• What type of relationship would have to occur
for this to happen?



Leading up to some ASSUMPTIONS for
Inferential Regression

1. Expected Value of disturbances = 0
(E(ei)=O)

a) i.e. The population regression is linear
2. Homogeneity of Variance for e;
3. e; are normally distributed
4. e; are independent



Inferences About R o and R,

• bo and b, are point estimates of Ri o and R,
— I.e. they are calculated from samples, thus they are statistics
— Thus they are random variables with probability distributions (sampling

distributions)
• Just as sample means are unbiased estimates as population

means...
— bo and b, are unbiased estimates of P O and P,
— We assume that their sampling distributions are normally distributed
— ...and as n increases, bo and b, become closer and closer to P O and P,
— Of all possible estimators of R 1 b, has the desirable feature of having

smaller sampling errors than any other unbiased estimator.



In other words...

• bo and b, are unbiased Estimators
— Mean of sampling distribution = Pop mean

• bo and b, are Consistent Estimators
— As n increases, estimator approaches parameter

• bo and b, are a Minimum Variance Estimators
— While there are other unbiased estimators "out there,"

bo and b, have the smallest variance



GIVEN all of these assumptions

• We can make hypotheses about PO and R1,
and use bo and b i to test our hypotheses
—like we can about means or other statistics.

is But we're missing one remaining
component of the Regression Equation.
— Variance around the regression line, or Error

Variance
— We know our predictions aren't perfect, but

we need to quantify the "error in prediction"



Estimating Variance around the
Regression Line

• The estimate of Variance @Regression:
17

(Yi
	 l2

 y` J	 SSE
62— s2— '-'	 _	 = MSE

n-2	 n-2

• SSE = sum of squared errors, adjusted by n-2 df to
incorporate sample size.
— Df=(sample size — num of coefficients)

• We're estimating two coefficients, bo and b,

• MSE=Mean Sauare Error = anv SS/df1	 J

• Square Root of ss termed "Stand Error of Regression"



Back to our SPSS Example...

• Note the SSR, SSE and IVIS terms in the
ANOVA Summary Table

• Use ANOVA Table to Evaluate
Significance of the Regression Equation
— More important later, when we discuss

multiple regression

• Interpret R 2



Hypothesis testing in Regression

• We know that the LS estimates of bo, & bi are
unbiased estimators of the Population
coefficients f3k

• We can calculate Confidence Interval Estimates
(& significance values) of Rk

• And we test hypotheses that the population beta
weights (Rk) are significantly greater than some
hypothesized value (usually 0)
—Reject the notion that f3k = hypothesized value if

observed t-score probability < alpha



The Theory Behind It?

• Create Null and Alternative Hypotheses:
HO : /3k = 8k (usually 0)
Ha ^ /3k ^ /3,z

• Calculate t-score(s) for coefficients
bk — Pic* bkt = _	 (when O,,' = 0)

Sher	
Shk

• Compare t-value to critical t (given alpha)
Reject H o if t > ta12 or t < ta12

Accept H O if - ta12 :!^ t < ta12



A Closer look at t-formula Ho 13k = n,`c^G^^^^^>o,

• Calculate t-score(s) for coefficients
t bk -Pk bk (when ,8k = 0)

S	 rs.,")

SD of the sampling
distribution of bk

When null is true, t-should be (large or small)? Why??
When Alternative is true, t-should be (large or small)?



A Closer look at t-formula

• Calculate t-score(s) for coefficients

t = bk - ^k = bk (whenfl,,' = 0)
Sb4-	 Sbk

NOTE that we are NOT comparing two sample
means, even though we're using a t-test! We
are comparing our observed b,, to a constant

that we choose (,8,*-., which us usually 0). 	^



The "Typical" Situation

• Testing Hypothesis that the coefficients
are significantly higher or lower than 0

bk — Pk* bk 0 bk

Sbk	 Sbk	 Sbk

• If bi coefficient = 0, what would that mean
in terms of the Regression Equation?

bo + bix



If Null is Accepted
	

HO :,6k = 6k (usually 0)

• Small t-statistic, p-value is not < alpha.
- "X does not appear to be linearly related to Y"

• Le. x doesn't help you predict y



If Null is Rejected	 "° :,8^ Pk (usually 0)

• Large t-statistic, p-value is < alpha.
- "There is evidence that y and xk are linearly

related, and that xk helps explain some of the
variation in y (not accounted for by the other
explanatory variables). "

• I.e. x is helpful in predicting y

• Parentheses used in multiple regression... coming
soon!



How will we do this?

• SPSS will calculate:
— Some diagnostics that help us evaluate our

assumptions about the data
— Estimates of the coefficients
— SD for the estimates of coefficients
— T-scores comparing estimate to 0
— p-values associated with the T-test

• Humans will
— Interpret the output in plain English!
— Then explain it to constituents so that they can

understand it too!



Back to our SPSS Example

• Find the Table of Coefficients
— T-values, p-values
—Can you construct the linear equation?

• Evaluate when our model is least &most
accurate
— Plot actual vs. predicted values
— Calculate r, r2 &Interpret



Multiple Regression Analysis
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Simple vs. Multiple Regression

• "Simple" refers to predicting a single
outcome (y) from a single predictor (x)

• "Multiple" refers to predicting a single
outcome (y) from two or more predictors
(x1, x2, x3)

—Still assuming a linear relationship
• But there are ways to "coax" linearity if it's not

already there...



Multiple Regression Exampleslow
tx. Predict Faculty Salary from Age,
Department, Years as Faculty Member
and Gender

Predict Student Performance on GE
Outcomes from Cumulative GPA, College
Major, and Gender



Multiple Regression

• We're still talkin
relationships ^

.v =

g about Linear

bo + blxl + b2x2 ... + bkxk

• Still using method of Least Squares to
develop the equation

• Still estimating regression coefficients
(betas)



Multiple Regression

• But Graphing the equation results in a
plane, or more complex geometric shape,
not a line, even though the relationships
are still linear...
— 3-D graphing?
— ...or 2-D graphing?



Linear Regression with
95.00% Mean Prediction Interval

les = 8.31 + -0.09 * price + 0.38 * advertising
Square = 0.45

N

ro

Multiple Regression Plane
(example w/2 predictors)

Predicting Sales from Price and Advertising

Price	 160	 20.w	 pollal
pdver^isin9



Regression ^SPAI

Assumptions for the Population Multiple

U - ^'e ^eg^reSsio'-'i^
1.Expected value of disturbances is zero: E(et ) = 0

2. Variance of each e; is equal to 6e

(i.e. each disturbance along the regression

line has equal variance regardless of value of x)

3. The ei are normally distributed..

4. The ei are independent. (Be careful RE longitudinal

data... usually not independant.)



Assumptions for the Population Multiple
Regression

1.Expected value of disturbances is zero: E(et ) = 0

2. Variance of each et is equal to 62

(i.e. each disturbance along the regression

line has equal variance regardless of value of x)

3. The ei are normally distributed..
CTOneew assumption,

4. The e; are independent. (Be careful RE J ( because we have
multiple predictors...

data... usually not independant.)

5. Predictors themselves are independant



Assessing the FIT of a Multiple
Regression Line

• In Simple Regression, we mainly focused
on discussing the significance of the
regression coefficients.

• In Multiple Regression, we must also pay
attention to the overall Regression
Equation?
— Is it any good at predicting?
— How do we know?



Assessing the FIT of a Multiple
Regression Line

is With Simple Regression, we didn't pay
much attention to this.
— If the coefficient was significant, that implied

that the equation itself was too.
• With Multiple Regression, we must first

evaluate the overall equation before diving
deeper.
—Then determine which, if any coefficients are

significant.



Recall Hypothesis Testing with Simple
Regression...

MF.-	
I

bo +box
	

Ho :,8k _ /3k (usually 0)

Ha : A, # K

b^^ —	 bk

t =	 _	 (When ,Qk = O)
sbk 	 sbk

Reject H O if t > ta12 or t < ta,Z

Accept H O if -t a/ 2 C t C tall



Hypothesis Testing with Multiple-
Regression

+bx +b x ...b x	 H.:A=)62= ... = =0
1 1	 2 2	 k k	 Ha : At least one coefficient is not equal to zero

If refe t
Reject Ho if F > F(a; K, n — K —1)

Ho : ,flk = flk (usually 0) Accept H o if F<_ F(a; K, n — K —1)

Ha'A A

	

t _ bk	 Reject H o if t > ta12 or t c ta12

	

sbk  	 Accept H o if - ta12 <_ t <_ ta,2

bo



The ANOVA Summary Table

is Evaluation of the overall "Fit" of our
Regression Equation

• Do all coefficients = 0 (null hyp) or is at
least one of them 0 0 (alt hyp).

• The results of the ANOVA are found in an
ANOVA Summary Table...

FReject H O if F > F(a; K, n — K —1)

[Accept H O if /' _< F(a; K, n — K —1)



The ANOVA immary T

Source DF SS MS F P-

Regression K SSR SSR/K MSR/MSE p-value

Residual
Error

n-k-1 SSE SE/(n-K-1)

Total n-1 SST

Sums of Squares



ANOVA SS and MS terms...

The F-Ratio (MSR/MSE), and the
associated p-value, tell us whether or
not our regression equation is predicting
a "significant" amount of the variance in
y from knowledge of x j , x2, ... xk.

— If P=value < 0.05 (traditionally), equation is
said to be "significant"



The R2 Term
(Generated from SS Terms)

• The variation in y: SST = SSE +SSR
— "Total SS=Regression SS+ Error SS"

R2 =the ratio of explained-to-total
variance (SS) is an evaluation of the
overall regression.	 rte,,,

R 
2 = 33A

SST
I.e. "percent of variance accounted for



ANOVA p-value VS. Multiple-R2

• ANOVA p-value tells us whether we can account
for a significant proportion of variance in Y, by
knowledge of all of the predictors (X 1 , X2... Xk)-
— F=MSR/MSE... associated with a p-value

• Multiple-R2 tells is an estimate of how much
variance we can account for in Y by knowledge
of all of the predictors (X 1 , X2... Xk)-
— R2=SSR/SST



The Multiple R-Square

• The "Multiple-R2" value is very similar to
the correlation coefficient.

R 2 SSR I _ SSE

SST	 SST)
• But in multiple-regression it has a flaw...

— It doesn't decrease as new predictors are
added, even if they are "useless" additions.



The Adjusted Multiple-R-Square

• We need to "adjust" the R 2 value to correct
for the addition of more predictors	 Num

predictors

R 2	
SSE

SST
D z  	

SSE 1(n — K — 1)

°
l
' 	 SST 1(n — 1)

• Note how the SS in numerator and
denominator are adjusted for their df?



The Adjusted Multiple-R-Square

• This "adjustment" results in an adjusted R-
square value that compensates for the
number of predictors in the model.
— No longer represents "the percent of variance

accounted for"
— But CAN BE used to compare different

multiple-regression models
• More on this later...



Let's Give it a Try, eh?

• SPSS Example of Multiple Regression
— One Outcome Variable (number SAT scores sent to

NH)
— Several Predictors (Total SAT Takers, other

predictors)

• What's the R2? Adjusted R2?

• Is the equation itself any good? (i.e. can it
account for sig. prop. of Y variance?)

• Which, if any, of the predictors are useful?
— Interpret



Steps We'll Take...

1. F-test for overall fit of regression
2. If F-test is significant, examine the t-tests

for each of the coefficients.
3. Report the total percent variation in y

explained by the x predictors
4. Examine the Adjusted R2



SPSS Example

• Multiple Regression predicting Number of
SAT scores sent to UNH, by
—Total number of test takers

—Average SAT Verbal Score

—Average SAT Math Score
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Strategies when theory cannot guide
you...

• Thus far, the theory has been our guide on
choosing predictors to consider
—Theory is always the best strategy!!

• Sometimes you may be on a "data mining"
mission...

• There are techniques that can help you
—With Rob's strong dose of caution!



Statistical Strategies

Selection algorithms: rules for deciding when
to drop or add variables

1. Backwards Elimination
2. Forward Selection
3. Stepwise Regression
4. Run All Possible Models



Words of Caution

• None guarantee you get the right model because
they do not check assumptions or search for omitted
factors like curvature.

• None have the ability to use a researcher's
knowledge about the situation being analyzed.

• Many among the scientific community do not respect
statistical selection strategies like these because they
are not grounded in theory, and they capitalize on
sample variance relationships that may not exist in
the population...



Backwards Elimination

• Start with all variables in the equation.
• Examine the variables in the model for

significance and identify the least
significant one.

• Remove this variable if it does not meet
some minimum significance level.

• Run a new regression and repeat until all
remaining variables are significant.



Forward Selection

• At each stage, it looks at the x variables not in
the current equation and tests to see if they will
be significant if they are added. (I.e. a significant
partial-F statistics would result.)

• In the first stage, the x with the highest
correlation with y is added.

• At later stages it is much harder to see how the
next x is selected.



Stepwise Regression

• A limitation with the backwards procedure is that
a variable that gets eliminated is never
considered again.

• With forward selection, variables entering stay
in, even if they lose significance.

• Stepwise regression corrects these flaws. A
variable entering can later leave. A variable
eliminated can later go back in.



Stepwise...

• Begins like Forward (Chooses best predictor, adds
it, tests for sig Partial-F, Keeps if pass criteria)

• Next look at remaining predictors, choose "best"
one (Highest Partial-F), and includes it.

• Then behaves like Backwards... Potentially
REMOVING one of the variables already included if
it's not necessary.

• Then adds a new one...
• Then tests to remove any of those included...
• Until finished.



Stepwise...

• Ultimately, all variables in the equation are
adding significantly, and none of the ones
eliminated would (according to criteria we
establish ahead of time)

is	It is possible to add a variable, remove it
later, then add again at a later step!



Example of using Stepwise with SPSS

• Consider parameters for adding/removing
variables
— "Alpha to Remove"

• maximum p-value a variable can have and stay in the
equation

— "Alpha to Enter"
• minimum p-vale a variable needs to enter the equation

• Often we use values like .15 or .20 because this
encourages the procedures to look at models
with more variables.



SPSS Example

• Predict the number of SAT scores sent to
NH
—Using Stepwise Selection Technique

• Including all (untransformed) predictors in the data
set



All Possible Models?

• If reasonable, this is likely a better solution
than Stepwise, but...
—Some software (SPSS) cannot easily

accommodate
—Can be unreasonable if there are many

potential predictors
—Still not as good as theory

• ex. what if anon-linear transformation is really the
driver?

• Model selection usually based on Adjusted
R2 for OLS regression



Related Advanced Topics

• Regression with Bivariate or Multinomial
Outcomes
— Log it Procedure

• Quite different in output and interpretation
— Logistic Regression

• Useful for >2 categories to the outcome variable

• Regression for Ordinal outcomes
— Poisson, Negative Binomial, Others

• Hierarchical (nested) Regressive models
— "Block" Regression in SPSS
— Used to compare models with increasing

complexity...



New Advances

• Hierarchical Linear Modeling (HLM)
—A.k.a. MLM, Mixed Modeling

• Allows for nesting to be considered
• Allows both fixed and random effects
• Allows for time-dependant covariates
• Allows for group-level effects modeling
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Time Series Regression

Some data are linear in their relationship,
but have "cycles" that we'd like to capture
also
— Ex. New Admits over time

• Where predictable cycles exist among Fall, Spring,
Summer terms



Consider this time series plot:
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But if we could "capture" the cycle of
FA/SP/SU wouldn't that be better?
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How?

• Include "dummy" predictors indicating
whether data is from a Fall, Spring, or
Summer term
—Use 2 of the 3, leaving one as "reference"

• Run Multiple Regression:



Comparison of the two models:
IV

Simple Regression Model
Model SummaO

Model R R Square
Adjusted	 Std. Error of
R .	 the Estimate

1 .841a .707 1	 .702 J	 2161.135

a. Predictors: (Constant), Observation	 '`

b. Dependent Variable: Number of Applicationos

ANOVAb

Sum of
Model Squares df Mean Square F Sig.
1	 Regression 6.8E+008 1 677290217.4 145.014 .000a

Residual 2.8E+008 60 4670502.918
Total 9.6E+008 61

a. Predictors: (Constant), Observation

b. Dependent Variable: Number of Applicationos Recd

Coefficients

Unstandardized Standardized
Coefficients Coefficients

B Std. Error BetaModel t Sig.
1	 (Constant) 761.925 555.637 1.371 .175

Observation 184.692 15.337 .841 12.042 .000

a. Dependent Variable: Number of Applicationos Recd

Time Series Regression
with Seasonal Predictors

Model Summary

Model R R Square
Adjusted	 Std. Error of
R S u	 e	 the Estimate

1 .9645 .930 .926	 1075.387

a. Predictors: (Constant), 

Spr;^ofApplicationos

 O	 taa#r^, Fall

b. Dependent Variable: 	 Recd

ANOVAb

Sum of
Model Squares df Mean Square F Sig.
1	 Regression 8.9E+008 3 296815296.0 256.659 .000a

Residual 67074505 58 1156456.975

Total 9.6E+008 61

a. Predictors: (Constant), Spring, Observation, Fall

b. Dependent Variable: Number of Applicationos Recd

Coefficients'

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta
1	 (Constant) -1352.942 340.067 -3.978 .000

Observation 186.214 7.634 .848 24.393 .000
Fall 4490.993 336.016 .541 13.365 .000
Spring 1611.276 336.016 .194 4.795 .000

a. Dependent Variable: Number of Applicationos Recd
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Modeling Policy Changes...
• Simply add a dummy predictor that

captures the policy change!
...Though it may be tempting, please make no assumptions
about the fact that "policy change" and "dummy" are in the same
sentence. O

Variables Entered/Removed

Model Variables Entered
Variables
Removed Method

1 ew Admission Standards (FA 2, Spring, Fall, Observation Enter

a. All requested variables entered.

—

b. Dependent Variable: Number of Applicationos Recd



Sum of
Model Squares df Mean Square F Sig.
1	 Regression 8.9E+008 4 222757289.6 190.960 .0005

Residual 66491234 57 1166512.879

Total 9.6E+008 61

a. Predictors: (Constant), New Admission Standards (FA98), Spring, Fall, Observation

b. Dependent Variable: Number of Applicationos Recd

Results?

ANOVAb
Model Summary

Model R R Square
Adjusted
R Square

Std. Error of
the Estimate

1 .9655 1	 .931 .926 1080.052

a. Predictors: (Constant), New Admission Standards
(FA98), Spring, Fall, Observation

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta
1	 (Constant) -1219.940 389.910 -3.129 .003

Observation 177.909 14.027 .810 12.684 .000
Fall 4475.465 338.188 .539 13.234 .000
Spring 1604.053 337.628 .193 4.751 .000

New Admission
367.505 519.725 .045 .707 .48Standards (FA98)

a. Dependent Variable: Number of Applicationos Recd

In this case, the policy
change did not

significantly impact
admits after modeling

time and cycles of
semesters...



Sum of
Model Squares df Mean Square F Sig.
1	 Regression 8.9E+008 4 222757289.6 190.960 .0005

Residual 66491234 57 1166512.879

Total 9.6E+008 61

a. Predictors: (Constant), New Admission Standards (FA98), Spring, Fall, Observation

b. Dependent Variable: Number of Applicationos Recd

Results?

ANOVAb
Model Summary

Model R R Square
Adjusted
R Square

Std. Error of
the Estimate

1 .9655 1	 .931 .926 1080.052

a. Predictors: (Constant), New Admission
(FA98), Spring, Fall, Observation

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta
1	 (Constant) -1219.940 389.910 -3.129 .003

Observation 177.909 14.027 .810 12.684 .000
Fall 4475.465 338.188 .539 13.234 .000
Spring 1604.053 337.628 .193 4.751 .000

New Admission
367.505 519.725 .045 .707 .482Standards (FA98)

a. Dependent Variable: Number of Applicationos Recd

And the adjusted R2 is
similar to the simpler

model that did not
include the policy

change predictors.
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Principal —Axis Exploratory Factor
Analysis

• Common in survey research
• Useful for "discovery" of underlying

constructs
• Useful as a strategy for condensing data
• Useful as a strategy to approximate

continuous data from ordinal data
elements
—Combining several Likert-Scaled items into

one construct score that behaves "normally"



What EFA can do?

• Purpose is to discover simple patterns
among variables

• If patterns are found, we call them
"factors," or "constructs—hence the name

is EX: Is intelligence uni-dimensional, or
multi-dimensional?
—Hint: Consider College Board Exams...

• Verbal, Math, Logic



E FA Graphic (after solution has been rendered)

Item 1
Item 5	 Factor 1

Item 13
Item 7

Item 2
Item 3
Item 11cto:r2
Item 6
Item 9

Item 4
Item 8

Item 10	 Factor 3
Item 12



Goals of EFA

• To better understand the underlying
constructs.
— Thus inferences are made about the

constructs, not individual items
Item 1
Item 5	 Factor 1

Item 13It
	 7

Item 2
Item 3

Item 11	 Factor 2
Item 6
Item 9

j

48
10Factor 3

12



How it works
Item 1	 -^-

^em 	 Factor 1
Item 13	 \\\
Item 7	

_ _ _ _^

Item 2
Item 3
ftrn 11 ^_	 Factor 2
Item 6
Item 9

Item A

Item 8	 z	 ~ ^^^
Item 10	 Factor 3

Item 12

• Begins with a simple correlation matrix
— In fact, you don't need raw data in some cases

(rotation)
• EFA attempts to "categorize" variables according

to how similar/dissimilar they are to other
variables
— By calculating factor loadings....

• Goal is to produce the minimum number of
factors that adequately explains the data



Some Details

• As always, there are options w/how to run
EFA, and there are detailed references
available

• "Rotation" options to simplify our
understanding of factor structure
— Orthogonol (more complex structure, but

more independence of factors)
—Oblique (simpler structure, but factors may

correlate more)



Rotation

• Procedure (ex. Varimax) that searches for
linear combinations (i.e. rotations) of
original factors so that the variance of the
loadings is maximized



Varimax Rotation

• Varimax Rotation is probably the most
popular choice for EFA (Kaiser, 1958)
— Each factor should have small number of

items loading heavily on it
• Each variable should load mostly onto only one

factor
• Thus simplifying our understanding of underlying

constructs



Wine Tasting Example

• Factor Rotations in Factor Analyses
— Herve Abdi, University fo Texas at Dallas

• Five Wines are Rated by Seven Questions

Rible 1: An (artificial) example for PCA and rotation. Five wines are described
by seven variables.

For For
Hedonic meat dessert. Price Sugar :alcohol Acidity

NV ine 1 14 ; + ; 13 a

NN,-'ine 2 10 7 6 4 3 14 7
I1' ine 3 8 5 5 10 5 12 5
INT ine 4 z 4 + 16 7 11 3
N1 ine 5 6 2 4 13 3 10 3



Unrotated Two-Factor Solution: See any
patterns?

	

XI)
	 Table 2: Wine example: Ori2 n11 loading of the seven variables on the first two

	

m	
o)n1pollEnt5.

Hedonic
Aridity 9 Alcohol

For meat
•

	

For	 For

Hedcmic	 pleat	 dessert	 Price	 Sugar Alcobil	 Acidity

1	 Factor 1 -0.3965 41.1451 -0.2616	 11.41611 -0.0185 -0.13,K 15 A.154

Fhdoi2	 0.1119 -11.1090 -0,5 854, _0.3111 -0,,215	 IU555	 11,0865

Price

For dessert
0

Suer
0



Varimax Rotated Solution: See any
patterns?

Table 3: Wine example: Loadings, after v,^.Rixmx rotation, of the seven vari-
ables on the fiist two components.

	

For	 For

Hedonic	 meat	 I r;`ert	 Price	 Sugar Alcohol Acidity

	

r	 Factor 1 —0.4125 —0.4057 —0.1147 	 0.4790	 0.1286 —0.4389 —0.4620
1

	

f	 Factor 2	 0.0153 —0.2138 —0.6321 —0.2010 —0.7146 —0.0528 —0.0264

rr	 X1

r	 Seems likely  that there
0= 15°	 are two dimensions

Price•'^	 — One factor of sweetness
— The other linked to price

and complex taste qualities

X2

. Hedonic
Acidity • a Akohol

For meat r

r

r

r
For dessert

sugar
1	 •



Next Example using SPSS for EFA

• Data set provided by Mary Ann Coughlin
—Editor & Co-Author of AIR

Intermediate/Advanced Statistics in IR
Monograph

— Twenty-Seven item questionnaire of
graduates from a small liberal arts college.

—Asking about things they gained from their
education



do"' Twenty-Seven Questions that
Not
Not tap into perceived benefits of
Not
Not	 an education...
Not
Not
Not
Not	 Ripe for EFA!
Not
Not at
Not atall).. 	 iaht Ordinal

[0, Not at all} ... 9 8 IRight Ordinal
10, Not at all} ... 9 8 Right Ordinal
10, Not at all} ... 9 a Right Ordinal
(0, Not at all} ... 9 8 Right Ordinal
10, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} --- 9 $ Right Ordinal
(0, Not at all} --- 9 8 Right Ordinal
(0, Not at all} ... 9 8 Right Ordinal
None None 8 Right Scale
None 0 8 Right Scale
None 0 8 Riaht Scale

ne	 18	 IRiaht IOrdin

Next Example using SPSS for EFA

File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

C61A rte-	 : '_ 9? ##-9&R il R'4(6

Name	 Type	 Width Decimals	 Label

1 gender Numeric 8 2 Gentler of Subject
2 writ_sc Numeric 1 0 Write effectively
3 comm_sc Numeric 1 0 Communicate well orally
4 acqu_sc Numeric 1 0 Acquire new skills and knowledge on my own
5 thin_sc Numeric 1 0 Think analytically and logically
6 form_sc Numeric 1 0 Formulate creative ! original ideas and solutions
7 eval_sc Numeric 1 0 Evaluate and choose between alternative courses
8 lead	 sc Numeric 1 0 Lead and supervise tasks and groups of people
91 rel_sc Numeric 1 d I Relate well to people of different races, nations

10 func_sc Numeric 1 0 Function effectively as a member of a team
111 comb_sc Numeric 1 0 Use computers for basic tasks (word processing)
121 comc_sc Numeric 1 0 Use computers for complex tasks (graphing)
1 --11prob_sc Numeric 1 0 Place current problems in historical prospective
14 mor_sc Numeric 1 0 Identify moral and ethical issues
15 und_sc Numeric 1 0 Understand myself, my abilities, interests
16 ind_sc Numeric 1 0 Function independently without supervision
17 dept_sc Numeric 1 0 Gain in-depth knowlegde of a field
18 comp_sc Numeric 1 0 Plan and execute complex projects
19 ferl_sc Numeric 1 0 Read or speack a foreign language
20 art_sc Numeric 1 0 Appreciate art, literature, music, drama
21 brod_sc Numeric 1 0 Acquire broad knowledge in the Arts and Sciences
22 fem_sc Numeric 1 0 Develop feminist awarenenss
23 soc_sc Numeric 1 0 Develop awareness of social problems
24 self_sc Numeric 1 0 Develop self-esteem /Self-confidence
25 frnd_sc Numeric 1 0 Form close friendships
26 goal_sc Numeric 1 0 Establish a course of action to accomplish goals
27lsynt_sc Numeric 1 0 Synthesize and integrate ideas and information
28 sci_sc Numeric 1 0 Understand the role of science and t
2:9 lidgpa Numeric 6 4 Grade Point Average
,0 verb_sat Numeric 3 0 Verbal SAT Score

311 math sat Numeric 3 0 Math SAT Score
3d comb_sat Numeric 8 2

331 div INumeric 11 10 1 Division of p rimary maior field of stud

4 ► l Data View Wariable View } 	 It



How would you summarize the data?

• Table of Means?
• Histograms?



Table of Descriptive Statistics:

Descriptive Statistics

N Range Minimum Maximum Mean Std.

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic
Write effectively 621 3 0 3 2.46 .026 .648

Communicate well orally 618 3 0 3 2.21 .031 .779

Acquire new skills and knowledge on my own 614 3 0 3 2.45 .029 .714

Think analytically and logically 616 3 0 3 2.40 .029 .716

Formulate creative / original ideas and solutions 611 3 0 3 2.15 .032 .803

Evaluate and choose between alternative courses 608 3 0 3 2.01 .033 .816

Lead and supervise tasks and groups of people 611 3 0 3 1.89 .038 .949

Relate well to people of different races, nations 615 3 0 3 2.23 .035 .873

Function effectively as a member of a team 610 3 0 3 1.91 .035 .860

Use computers for basic tasks (word processing) 611 3 0 3 2.02 .042 1.045

Use computers for complex tasks (graphing) 610 3 0 3 1.00 .045 1.115

Place current problems in historical prospective 609 3 0 3 2.23 .034 .835

Identify moral and ethical issues 612 3 0 3 2.09 .034 .842

Understand myself, my abilities, interests 614 3 0 3 2.41 .032 .800

Function independently without supervision 612 3 0 3 2.26 .035 .870

Gain in-depth knowlegde of a field 614 3 0 3 2.38 .030 .744

Plan and execute complex projects 604 3 0 3 2.11 .033 .809

Read or speack a foreign language 609 3 0 3 1.38 .048 1.196

Appreciate art, literature, music, drama 611 3 0 3 2.12 .036 .899

Acquire broad knowledge in the Arts and Sciences 614 3 0 3 2.19 .032 .796

Develop feminist awarenenss 613 3 0 3 2.56 .029 .710

Develop awareness of social problems 610 3 0 3 2.36 .030 .747

Develop self-esteem /self-confidence 614 3 0 3 2.35 .035 .859

Form close friendships 617 3 0 3 2.46 .032 .803

Establish a course of action to accomplish goals 614 3 0 3 2.13 .031 .780

Synthesize and integrate ideas and information 612 3 0 3 2.30 .029 .720

Understand the role of science and technology 614 3 0 3 1.55 .039 .956

Valid N (listwise) 537
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What's the Big Picture?

is Simple to get the "take-home" message
from our graduates?
— Generally happy
—Simple Descriptives can tell us that.

• But what's the "big picture" of the benefits
of a college education from our college, in
the eyes of our graduates?
— This kind of question is ripe for EFA



SPSS Case Study

• Run Exploratory Factor Analysis
— Principal-Axis Method
—With Varimax Rotation

• Interpret the Results!



Six Underlying Constructs Resulting from our
Rotated Factor Structure

Rotated Factor Matrik

Factor

1 2 3 4 5 6
Think analytically and logically .643 .150 .091 .006 .118 -.026
Formulate creative / original ideas and solutions .625 .146 .145 .199 .031 .124
Synthesize and integrate ideas and information .587 .202 .217 .113 .208 .072

Acquire new skills and knowledge on my own .581 .070 .141 .090 .095 .146
Plan and execute complex projects .537 .042 .127 .148 .230 .168
Write effectively .512 .263 .094 .027 -.007 .142
Establish a course of action to accomplish goals .496 .195 .386 .223 .204 .112

Evaluate and choose between alternative courses .485 .175 .176 .397 .087 .067
Communicate well orally .460 .119 .265 .207 .037 .168
Gain in-depth knowlegde of a field .442 .074 .080 .039 .160 .117
Develop awareness of social problems .158 .732 .233 .091 .102 .099

Develop feminist awarenenss .082 .560 .148 .025 -.037 .158
Identify moral and ethical issues .288 .542 .168 .185 .098 .126
Place current problems in historical prospective .303 .433 .040 .166 -.063 .198
Form close friendships .122 .163 .569 .143 .077 .084

Understand myself, my abilities, interests .328 .275 .547 .159 -.056 .156
Develop self-esteem /self-confidence .370 .313 .543 .165 .096 .162
Function independently without supervision .372 .100 .455 .170 .165 .189
Relate well to people of different races, nations .125 .335 .337 .307 .165 .070

Lead and supervise tasks and groups of people .178 .089 .189 .724 .149 .048
Function effectively as a member of a team .160 .190 .208 .567 .240 .038
Use computers for complex tasks (graphing) .082 -.034 -.024 .112 .601 -.030
Understand the role of science and technology .380 -.013 .089 .138 .571 .164

Use computers for basic tasks (word processing) .122 .118 .247 .108 .402 .053
Appreciate art, literature, music, drama .178 .248 .141 .088 -.054 .650
Acquire broad knowledge in the Arts and Sciences .269 .124 .064 .050 .277 .413
Read or speack a foreign language .076 .079 .078 .003 .038 .402

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.



Six Underlying Constructs Resulting from our
Rotated Factor Structure

Rotated Factor MatriR

Factor

1 2 3 4 5 6
Think analytically and logically .643 .150 .091 .006 .118 -.026
Formulate creative / original ideas and solutions .625 .146 .145 .199 .031 .124
Synthesize and integrate ideas and information .587 .202 .217 .113 .208 .072

Acquire new skills and knowledge on my own .581 .070 .141 .090 .095 .146
Plan and execute complex projects .537 .042 .127 .148 .230 .168
Write effectively .512 .263 .094 .027 -.007 .142
Establish a course of action to accomplish goals .496 .195 .386 .223 .204 .112

Evaluate and choose between alternative courses .485 .175 .176 .397 .087 .067
Communicate well orally .460 .119 .265 .207 .037 .168
Gain in-depth knowlegde of a field .442 .074 .080 .039 .160 .117
Develop awareness of social problems .233 .091 .102 .099.158 .732
Develop feminist awarenenss .082 .560 .148 .025 -.037 .158
Identify moral and ethical issues .288 .542 .168 .185 .098 .126
Place current problems in historical prospective .303 .433 .040 .166 -.063 .198
Form close friendships .122 .143 .077 .084.163 .569
Understand myself, my abilities, interests .328 .275 .547 .159 -.056 .156
Develop self-esteem /self-confidence .370 .313 .543 .165 .096 .162
Function independently without supervision .372 .100 .455 .170 .165 .189
Relate well to people of different races, nations .125 .335 .337 .307 .165 .070

Lead and supervise tasks and groups of people .178 .089 .149 .048.189 .724
Function effectively as a member of a team .160 .190 .208 .567 .240 .038
Use computers for complex tasks (graphing) .082 -.034 -.024 .112 .601 -.030
Understand the role of science and technology .380 -.013 .089 .138 .571 .164

Use computers for basic tasks (word processing) .122 .118 .247 .108 .053
Appreciate art, literature, music, drama .178 .248 .141 .088 -.054 .650
Acquire broad knowledge in the Arts and Sciences .269 .124 .064 .050 .277 .413
Read or speack a foreign language 076 .079 .078 .003 .038 .402

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.
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Technology
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1
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543

455

.077 .084

159

165 Leadershi /Teamwork
170

307 .070

.149	 .048724
567 .240	 .038

2 .601	 -.030
138 .571	 .164

108 .053
088 -.054	 .650

413
038	 .402

.082 -.034 -.024

.380 -.013 .089

.122 .118 .247

.178 .248 .141

.269 .124 .064

Arts & Humanities

4 5 6

.006 .118 -.026

 .199 .031 .124

C1  .113 .208 .072^217

 .090 .095 .146

 .148 1	 .230 .168

Social/Moral Reasonin g
.397 .087 .067

.207 .037 .168

80	 .039 .160 .117

233

148	 Self-

168	 Awareness/Independence
040

Six Underlying Constructs Resulting from our
Rotated Factor Structure

Rotated Factor

Knowledae Gains
Think analytically and logically

Formulate creative / original ideas and solutions

Synthesize and integrate ideas and information

Acquire new skills and knowledge on my own

Plan and execute complex projects

Write effectively

Establish a course of action to accomplish goals

Evaluate and choose between alternative courses

Communicate well orally

Gain in-depth knowlegde of a field

Develop awareness of social problems

Develop feminist awarenenss

Identify moral and ethical issues

Place current problems in historical prospective

Form close friendships

Understand myself, my abilities, interests

Develop self-esteem /self-confidence

Function independently without supervision

Relate well to people of different races, nati

Lead and supervise tasks and groups of pe

Function effectively as a member of a team

Use computers for complex tasks (graphing)

Understand the role of science and technology

Use computers for basic tasks (word processing)

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Read or speack a foreign language

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.



Advanced Topics Related to EFA

• Confirmatory Factory Analysis
—Testing hypotheses about factor structure

• Structural Equation Modeling
—Testing structure on the "predictor" and

"outcome" side of the equations
— Path-Analysis-Like model fitting
—Mediator/Moderator effects testing
—Just to name a few examples!



Questions? Comments?
Course Evaluations Please!!!

Robert Ploutz-Snyder, Ph.D.
Biostatistician NASA JSC

USRA /Division of Space Life Sciences,
Research Associate Professor of Medicine

SUNY Upstate Medical University

AR
What topics needed more info?

Less info? If more, what
should I eliminate??

Association for	 Association for
Institutional Research	 i	 Institutional Research


